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March 2020. As of 19th September 2022, SARS-CoV-2 
infected > 617  million individuals and claimed > 6.5  mil-
lion lives worldwide [1].

The SARS-CoV-2 spillover event is considered one of 
the greatest One Health disasters that costed >$16 trillion 
USD in pandemic management, reduced productivity 
and health [2]. Retrospectively, several epidemiological 
warnings over the course of the last two decades in the 
form of epidemic coronavirus spillover events, namely 
the Severe Acute Respiratory Syndrome Coronavirus 
(SARS-CoV) in 2002 and Middle Eastern Respiratory 
Syndrome Coronavirus (MERS-CoV) in 2012  were sig-
nificantly downplayed. Following this, the discovery of a 
bat coronavirus RaTG13 with a 96.2% genomic sequence 
similarity to SARS-CoV-2 in Mojiang, Yunnan, China in 

Main
The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the virus that causes the coronavirus 
disease 2019 (COVID-19) was first reported in a clus-
ter of patients with pneumonia in Wuhan, China, in late 
2019. SARS-CoV-2 spreads rapidly, resulting in clusters 
of respiratory infections worldwide, and been declared a 
pandemic by the World Health Organisation (WHO) in 
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Abstract
Background SARS-CoV-2 is believed to have originated from a spillover event, where the virus jumped from bats to 
humans, leading to an epidemic that quickly escalated into a pandemic by early 2020. Despite the implementation 
of various public health measures, such as lockdowns and widespread vaccination efforts, the virus continues 
to spread. This is primarily attributed to the rapid emergence of immune escape variants and the inadequacy of 
protection against reinfection. Spillback events were reported early in animals with frequent contact with humans, 
especially companion, captive, and farmed animals. Unfortunately, surveillance of spillback events is generally lacking 
in Malaysia. Therefore, this study aims to address this gap by investigating the presence of SARS-CoV-2 neutralising 
antibodies in wild rodents in Sarawak, Malaysia.

Results We analysed 208 archived plasma from rodents collected between from 2018 to 2022 to detect neutralising 
antibodies against SARS-CoV-2 using a surrogate virus neutralisation test, and discovered two seropositive rodents 
(Sundamys muelleri and Rattus rattus), which were sampled in 2021 and 2022, respectively.

Conclusion Our findings suggest that Sundamys muelleri and Rattus rattus may be susceptible to natural SARS-CoV-2 
infections. However, there is currently no evidence supporting sustainable rodent-to-rodent transmission.
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2012 failed to ring a bell [3]. Recently, another bat coro-
navirus, BANAL-13, with higher genomic similarity to 
SARS-CoV-2 (96.8%), has been discovered in Laos, fur-
ther cementing the idea that SARS-CoV-2 was indeed 
a spillover from bats. To date, the intermediary host of 
SARS-CoV-2 remains a mystery, although several studies 
have suggested pangolins to be the probable intermediate 
host [4–6].

The first documented spillback case was recorded 
in Hong Kong on the 29th February 2020 involving a 
dog [7]. Since then, SARS-CoV-2 has been reported in 
twenty-three different animal species globally, including 
cats, dogs [8], mink, otters, pet ferrets, lions, tigers [9], 
pumas, snow leopards, gorillas, white-tailed deer [10, 
11], fishing cat, Binturong, South American coati, spot-
ted hyena, Eurasian lynx, Canada lynx, hippopotamus, 
hamster, mule deer, giant anteater, West Indian manatee, 
black-tailed marmoset, common squirrel monkey [12] (as 
of 31st July 2022).

Historically, scientific evidence has shown that rodents 
are non-competent hosts for SARS-CoV-2 primarily due 
to the low avidity of the wildtype SARS-CoV-2 receptor 
binding domain (RBD) to murine Angiotensin-Convert-
ing Enzyme 2 (ACE2) expressed in cell lines [12–14]. 
However, with the emergence of the N501Y mutation 
in the spike of Alpha/B.1.1.7 (WHO/Pango lineage), 
Beta/B1.351 and Gamma/P3 variants of concern, there 
has been a notable shift. This mutation not only confers 
enhanced affinity towards human ACE2 but also to house 
mice (Mus musculus) and brown rats (Rattus norvegi-
cus) [15]. To date, there has been no active SARS-CoV-2 
infections in rodents. The sole evidence of SARS-CoV-2 
exposure in rodents comes from Hong Kong, where sero-
positivity was identified in a single individual (Rattus 
norvegicus) [16]. Similar serosurveillance studies con-
ducted in Belgium and Germany have reported no prior 
exposure of rodents to SARS-CoV-2 [17, 18].

With the increasing trend of home quarantine for 
SARS-CoV-2 infected individuals, thereby replacing des-
ignated quarantine centres, and the high prevalence of 
subclinical infections, we hypothesize that more infec-
tious SARS-CoV-2-contaminated waste may enter unseg-
regated domestic waste. This situation could potentially 
expose scavenging rodents to SARS-CoV-2 infections. 
Therefore, our study aims to investigate the presence of 
SARS-CoV-2 neutralising antibodies in wild rodents in 
Sarawak, Malaysia.

Results
A total of 208 archived plasma samples from rodents, col-
lected between 2018 to Aug 2022 in Sarawak, Malaysia, 
underwent screening for neutralising antibodies against 
SARS-CoV-2. The tested plasma samples included 
rodents from six species: Rattus tanezumi, Sundamys 

muelleri, Rattus tiomanicus, Rattus rattus, Leopoldamys 
sabanus, and Maxomys whiteheadi (Table  1). Notably, 
one individual each from the year 2021 (Sundamys muel-
leri) and year 2022 (Rattus rattus) exhibited surrogate 
virus neutralisation test (sVNT) inhibition of 47% sur-
passing the manufacturer’s positive cutoff value ≥30% 
(see Fig.  1). The seropositivity of SARS-CoV-2 in the 
rodent was 0% (n = 0/4; 2018), 0% (n = 0/55; 2019), 0% 
(n = 0/40; 2020), 0.01% (n = 1/85; 2021), n = 0.04% (1/24; 
2022).

Discussion
Significance of findings
We provided the first serological evidence of SARS-
CoV-2 exposure in Sundamys muelleri and Rattus rattus. 
In a related study, Miot et al., 2022 reported the detection 
of SARS-CoV-2 neutralising antibodies in Rattus norvegi-
cus, suggesting potential susceptibility of SARS-CoV-2 
within the Muridae family [19]. Notably, these three 
species – Sundamys muelleri, Rattus rattus and Rattus 
norvegicus - are free-ranging ubiquitous wildlife (synan-
thrope) that have adapted to urban living. They typically 
manifest as pests, displaying primarily nocturnal behav-
iour and shying away from humans, unlike many other 
naturally infected animal species by SARS-CoV-2.

Gradual adaptation SARS-CoV-2 RBD to murine ACE2
The initial study indicated that the prototype SARS-
CoV-2 RBD exhibits poor binding to murine ACE2 sug-
gesting a natural resistance of rodents to SARS-CoV-2 
infections [14]. However, subsequent in silico and in 
vivo studies have demonstrated the gradual adaptation 
of SARS-CoV-2 variants to murine ACE2 receptors. For 
instance, genomic sequence analysis suggests that the 
SARS-CoV-2 Omicron variant may have been resulted 
from a ping pong effect – a spillback from humans to 
mice, garnered mutation that enhanced the RBD’s avid-
ity for the mouse ACE2 receptor before spillover again 
into humans [20, 21]. In vivo studies have demonstrated 
the permissiveness of deer mice (Peromyscus manicala-
tus) and golden/Syrian hamster (Mesocricetus auratus) to 
SARS-CoV-2 infections in laboratory settings, after being 
inoculated with infective doses ranging from 104 to 106 
tissue culture infective dose 50 (TCID50) [22, 23], a high 
inoculum titre that may not be naturally encountered in 
the habitat. Infected deer mice shed viruses in the respi-
ratory tract, faeces and urine; and they readily transmit 
the infection to naïve deer mice via direct contact [23] 
highlighting a possible risk of sustained mouse-to-mouse 
transmission.

The observed low SARS-CoV-2 seroprevalence in our 
study suggests that spillback from humans to rodents 
via environmental contamination does occur but is not 
sustainable within the free-ranging rodents population. 
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Permissive hosts such as white-tailed-deer [10], minks 
[24] and Syrian hamster [25] exhibited high seropreva-
lence rates with high sVNT inhibition, indicating ongoing 
active transmission at the time of sampling. The moder-
ate sVNT inhibition observed in our study may represent 
the waxing or waning of immunity after exposure.

Persistence of SARS-CoV-2 in the environment
Infected individuals shed the SARS-CoV-2 virus via their 
respiratory tract and faeces. Since the primary mode of 
transmission is via aerosol, the use of face masks and res-
pirators have been proven effective in reducing the trans-
mission of SARS-CoV-2 and other respiratory pathogens. 
Face masks absorb infectious respiratory droplets, effec-
tively reducing the release of infectious aerosols into the 
surrounding but in one fallen swoop enriches it with 
infectious particles [26]. Since SARS-CoV-2 can survive 
on inanimate objects for hours, and even days [27], and 
this survival period can be extended as long as 21 days 
in the presence of protective biological fluids such as 
nasal mucus, sputum and saliva [28]. Consequently, the 
improper disposal of used facemasks has become a con-
cern, but has become largely neglected practice in public 
health settings [29]. In addition, the increased usage of 
rapid SARS-CoV-2 Antigen Test (RAT) kits has contrib-
uted to the rise in the disposal of used RAT kits in unseg-
regated domestic waste. Rodents scavenging through 
domestic waste may inadvertantly come into contact 
with used facemasks and RAT kits, which could poten-
tially serve as a source of transmission.

Both SARS-CoV-1 and SARS-CoV-2 are known to be 
shed in the stool of some infected individuals, raising 
concerns about potential over faecal-oral transmission. 
Although viable SARS-CoV-2 has been isolated from the 
stool [28], there has been no documented evidence of fae-
cal transmission. Despite these arguments, SARS-CoV-2 
remains viable in the faeces, contaminating sewer shed 
and leading to the discovery of both circulating [28, 30] 
and novel SARS-CoV-2 lineages in the watershed [28]. 
Smyth and co-workers have argued that the mysterious 
SARS-CoV-2 lineages exhibit rare mutations which allow 
expanded tropism to cells expressing human, mouse or 
rat ACE2 receptors, suggesting a potential origin of these 
novel SARS-CoV-2 lineages from rodents [31].

The two seropositive rodents were sampled in mar-
ket and residential areas during the Delta and Omicron 
variants wave, respectively [32, 33]. Both locations in the 
context of One Health could be the nexus of the spillback 
events, with used face masks, RAT kits, and other poten-
tially infectious materials entering the domestic refuse 
bins until scheduled disposal. We speculate that the 
infected rodents may have scavenged the SARS-CoV-2 
contaminated food waste in the exposed municipal bins 
due to spoilage, negligence or overflowing refuse.

Limitations
While we believe that this manuscript describes the 
first detection of neutralising SARS-CoV-2 antibodies in 
rodents in Malaysia, we also recognised several limita-
tions in our study [1]. Neither virological nor molecular 

Fig. 1 Anti-SARS-CoV-2 neutralising antibody in rodents sampled from 2018 to 2022. Neutralising antibody level in % inhibition was derived from the sur-
rogate virus neutralisation test cPASS (Genscript) and the manufacturer’s positive cutoff value was represented as a red line. Blue and red dots represent 
seronegative and seropositive results, respectively
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screenings were carried out in an attempt to confirm the 
infecting agent, which does not fulfil Koch’s postulates 
[2]. The moderate sVNT inhibition could indicate poten-
tial waxing or waning of immunity, non-specific anti-
body binding, or cross-reactivity [10]. However, plasma 
obtained from the pre-COVID-19 era (2018–2019), and 
low COVID-19 transmission era (2020) discounted the 
possibility of non-specific binding and cross-reactivity, 
[3] We did not compare our findings with the ‘gold stan-
dard’ PRNT50 due to the absence of biocontainment 
facilities. Nevertheless, the species-independent sVNT 
has consistently shown high concordance with VNT 
or PRNT50. However, previous assay evaluation stud-
ies have reported that the sensitivity of sVNT may differ 
between species. For instance, higher sVNT inhibition 
was observed on low PRNT50 sera from ferrets, rabbits, 
and cattle, while negative to moderate PRNT50 sera from 
a non-human primate, Cynomolgus macaques yielded 
low to negative sVNT inhibition [34]. Nonetheless, sVNT 
has been consistently shown to be in concordance with 
PRNT50 in humans, dogs, cats and hamsters [4, 35, 36] 
archived plasmas were collected opportunistically and 
may have introduced sampling bias.

Conclusions
The spillback of SARS-CoV-2 to rodents has been hap-
pening in Sarawak, Malaysian Borneo since 2021, but 
there is no evidence of a sustained transmission within 
the rodents’ population.

Continuous surveillance should be intensified at stra-
tegic locations such as municipal landfill and sewerage 
treatment plant to ensure that public health mitigation 
procedures can be implemented in a timely manner if a 
sustained transmission is detected.

Methods
Samples
Archived plasma samples from rodents collected for an 
ongoing pathogen surveillance activity from Jan 2018 to 
August 2022 were used in this study [37]. Cage traps were 
deployed at research sites during the sampling periods. 
The traps were baited with banana, salted fish, shrimp 
paste, and bread. Regular checks of the cage traps were 
done twice daily, both in the morning and evening, with 
bait replenishment carried out each morning. Rodents 
captured in the traps were carefully secured in cloth bags 
and subsequently transported to the laboratory for addi-
tional processing.

The morphometric measurements of each captured 
rodents were recorded, such as the total length, head-
body length, tail length, and hindfoot, together with their 
weight in the laboratory. The species identification was 
done in accordance with the criteria outlined in Phillipps 
and Phillipps, 2018 [38].

The rodents were anesthetized in a closed container 
permeated with excess isoflurane. Subsequently, once 
the animals were confirmed deceased, blood samples 
were extracted from the heart using a 5 ml syringe via the 
intracardiac route, and stored in EDTA tubes. Blood and 
plasma were separated via centrifugation, and stored at 
-20 °C until use.

Surrogate virus neutralisation test
All samples were screened for the presence of neutralis-
ing antibodies targeting the SARS-CoV-2 Wuhan-Hu-1 
(ancestral) RBD using species-independent surrogate 
virus neutralisation test, cPASS™ (Genscript, NJ, USA) 
[39]. Briefly, the tenfold diluted plasmas were combined 
with equal volume of horseradish peroxydase (HRP) con-
jugated RBD and preincubated for 30 min at 37 °C, before 
being transferred to ACE2-coated ELISA plate and incu-
bated for 15  min at 37  °C. The wells were sequentially 
washed four times and chromogenic signal development 
was done using tetramethylbenzidine (TMB) substrate 
and reaction stopped with concentrated 1  M hydro-
chloric acid. Absorbance was measured at 450 nm using 
SpectraMax iD3 microplate reader (Molecular Devices, 
San Jose, USA). Results are presented as percent inhi-
bition = (1- [OD value of Sample/OD value of Negative 
control]) x 100%. The manufacturer’s positive cutoff value 
is ≥ 30%. Results were analysed in Microsoft Excel Ver-
sion 16.62.
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